
Experimental Results for Class-Based Queueing

Sally Floyd and Michael Francis Speer

October 16, 1997

1 Introduction

This paper describes the experience of implementing CBQ's
top-level link sharing code as described previously in [FJ95].
This implementation incorporates work from previous im-
plementations of Class-Based Queueing from LBNL [Jac95]
and UCL [WGC 95]. This implementation extends the work
of previous implementations by incorporating both Top-Level
link-sharing and Weighted Round Robin within priority lev-
els of the link-sharing structure.

As discussed in [FJ95] and [Flo97], the use of Top-Level
instead of Ancestor-Only link-sharing allows a class to re-
ceive its allocated bandwidth more accurately from a CBQ
implementation.

Similarly, as discussed in [FJ95] and [Flo97], weighted
round robin (WRR) has two advantages over packet-by-packet
round robin (PRR) scheduling within a priority level. First,
WRR gives better worst-case delay behavior than PRR schedul-
ing for higher-priority classes. Second, WRR scheduling al-
lows excess bandwidth to be distributed among classes in a
priority level according to the bandwidth allocations of those
classes.

2 Description of CBQ Implementation

2.1 General CBQ description

Before discussing this CBQ implementation in detail, it is
important to note that this CBQ implementation is built uti-
lizing many components. At the high level CBQ is not just
a packet scheduler; it is a link-sharing resource manager. In
principle, CBQ's link-sharing could be implemented in con-
junction with a number of different packet scheduling algo-
rithms within a priority level, such as Deficit Round Robin,
Weighted Fair Queueing, or Fair Queueing. This implemen-
tation utilizes an implementation of Weighted Round Robin
(WRR) and/or Packet-by-Packet Round Robin (PRR) schedul-
ing. Compared to other general scheduling algorithms, these
two schedulers seem to be the least expensive in computa-
tional complexity. We discuss the details of these scheduling
algorithms later in the paper.

This work was supported by the Director, Office of Energy Research,
Scientific Computing Staff, of the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.

2.2 Principles Applied in CBQ Implementa-
tion

This CBQ implementation follows many principles previ-
ously outlined in [FJ95] to allow for the maximum flexibility.

First, this CBQ implementation continues to maintain a
separation of low-level mechanisms and high-level policy.
The CBQ kernel code provides a rich interface to implement
variety of high-level policies, including, if so desired, RSVP
and Integrated Services.

Second, the CBQ implementation preserves the link-sharing
model presented in [FJ95]. Link-sharing resources are asso-
ciated with CBQ traffic classes, where each CBQ traffic class
has a bandwidth allocation and a priority. It is left to the
high-level policy daemon to make decisions about how to al-
location bandwidth and priorities to the various classes. The
CBQ implementation is able to handle Quality-of-Service
(QOS) and link-sharing constraints simultaneously.

Finally, the CBQ implementation avoids the need for ex-
tensive per-conversation parameterization. Hence, this CBQ
implementation is able to separate IP conversations (flows)
into classes with a minimum of class and filter parameteriza-
tion.

2.3 CBQ Implementation

Major components of this implementation for CBQ's top-
level link sharing include a packet classifier, link-sharing
framework, packet scheduler, estimator, and management in-
terface. The packet classifier maps arriving packets into traf-
fic classes. The link-sharing framework is needed to main-
tain link-sharing constraints for an interface (e.g. an output
port) with a hierarchical link-sharing structure. The packet
scheduler schedules traffic classes according to their band-
width and priority considerations, with help from the esti-
mator. The management interface allows for the creation
and deletion of traffic classes; the creation and deletion of
packet classifier filters to map IP flows to the appropriate
traffic classes; and a simple statistical interface for inspec-
tion of CBQ's current state.

In this CBQ implementation, the link-sharing framework
is implemented using Top-Level Link-Sharing, described in
[FJ95]. Previous implementations implemented Ancestor-
Only link-sharing.

In this CBQ implementation, the packet scheduler or se-
lector is implemented with either a packet-by-packet round

1

Floyd and Speer, Experimental Results for CBQ 2

robin (PRR) or weighted round robin (WRR) scheduler. The
scheduler uses priorities, first scheduling packets from the
highest priority level. Round-robin scheduling is used to ar-
bitrate between traffic classes within the same priority level.
The weighted round robin scheduler differs from the packet-
by-packet scheduler in that it uses weights proportional to a
traffic class's bandwidth allocation. The weight determines
the number of bytes that a traffic class is allowed to send dur-
ing a round of the scheduler. If a packet to be transmitted by a
WRR traffic class is larger than the traffic class's weight and
the class is underlimit (via link-sharing constraints), then the
packet is sent, allowing the traffic class to borrow ahead from
its weighted allotment for future rounds of the round-robin.
The implementation of the WRR scheduler largely follows
that of the CBQ code in the ”ns” simulator [MF95]. In the
implementation of the CBQ code the scheduler components
are implemented as the functions rmc prr dequeue next for
PRR and rmc wrr dequeue next for WRR, both in the file
rm class.c [FS97].

When a traffic class is overlimit and unable to borrow
from parent classes, the scheduler activates the overlimit ac-
tion handler for that class. There are many policies that
could implemented for an overlimit class, including simply
dropping arriving packets for such a class. This CBQ im-
plementation rate-limits overlimit classes to their allocated
bandwidth. The rate-limiter computes the next time that an
overlimit class is allowed to send traffic. The class will not be
allowed to send another packet until this future time has ar-
rived. This rate-limiter action is implemented as
rmc delay action in the file rm class.c of the CBQ imple-
mentation [FS97].

The estimator estimates the bandwidth used by each traf-
fic class over the appropriate time interval (or, more pre-
cisely, simply estimates whether each class is over or under
its allocated bandwidth). As discussed later, the time con-
stant for the estimator determines the interval over which the
router attempts to enforce the link-sharing bandwidth con-
straint. Hence the parameterization of this time constraint
is key to enforcing link-sharing bandwidth allocations. This
implementation employs a exponential weighted moving av-
erage (EWMA) to estimate the bandwidth used by each class.
In this CBQ implementation, the estimator is implemented
as the function rmc update util in the file rm class.c of the
CBQ implementation [FS97].

The network management interface for this CBQ imple-
mentation allows for RSVP [BZ97] and other resource man-
agement mechanisms to configure the output link in the man-
ner appropriate for those mechanisms. The network man-
agement interface allows for the creation and destruction of
CBQ traffic classes, the appropriate filters to map the IP
flows to traffic classes via the packet classifier, and a rather
crude statistical interface for monitoring CBQ's internal state.
All code in the management interface can be found in the file
cbq.c of this CBQ implementation [FS97].

3 CBQ Parameters

The CBQ parameters for each class are set at class creation
time. Using the experimental policy daemon cbqd, classes
are created and parameterized as specified in a configura-
tion file. Each class definition supplies the priority, the al-
located bandwidth for the class (expressed in terms of link
bandwidth percentage), average packetsize, maxburst, min-
burst and maxdelay. Average packetsize is used in calcu-
lating maxidle and offtime, as shown below. Maxburst is the
maximum burst size for the class (that is, the maximum num-
ber of back-to-back packets sent by a previously-idle class).
Minburst is the burst size for an overlimit class that is be-
ing regulated to its allocated bandwidth. Maxdelay is the tar-
get maximum delay (in milliseconds) that average packetsize
packets will have to wait to be scheduled. Maxdelay is used
to determine the maxq (maximum queue length in number
of packets) parameter for the CBQ traffic class. Using these
class parameters, other class parameters such as maxidle are
derived to drive the CBQ scheduling apparatus.

For each class parameter not supplied in the class def-
inition, default values are supplied. Some of these default
values are as follows: maxburst defaults to 20 packets; min-
burst defaults to 2 packets; average packetsize defaults to
1000 bytes; and maxdelay defaults to 100 milliseconds.

In the CBQ policy daemon associated with the distributed
code [FS97], the function cbq create class in the file cbqif.c
utilizes the various inputs to compute the parameters dis-
cussed below.

3.1 CBQ Parameter Definitions

In CBQ, each class has variables idle and avgidle, and a pa-
rameter maxidle used in computing the limit status for the
class. This section discusses setting the maxidle parameter.
At one time a minidle parameter was used in the ns simula-
tor, but that parameter has been removed, and there is now
no lower bound on avgidle.

Definition: idle. The variable idle is the difference be-
tween the desired time and the measured actual time between
the most recent packet transmissions for the last two packets
sent from this class. When the connection is sending per-
fectly at its allotted rate , then idle is zero. When the con-
nection is sending more that its allocated bandwidth, then
idle is negative.

Definition: avgidle. The variable avgidle is the average
of idle, and is computed using a exponential weighted mov-
ing average (EWMA). When avgidle is zero or lower, then
the class is overlimit (the class has been exceeding its allo-
cated bandwidth in a recent short time interval).

Definition: maxidle. The parameter maxidle gives an
upper bound for avgidle. Thus maxidle limits the `credit'
given to a class that has recently been under its allocation.

Definition: offtime. The parameter offtime gives the
time interval that a overlimit class must wait before send-
ing another packet. This parameter is determined in part by

Floyd and Speer, Experimental Results for CBQ 3

the steady-state burst size minburst for a class when the class
is running over its limit. In the ns simulator [MF95], this
steady-state burst size is controlled by the extradelay param-
eter. A steady-state burst size of one packet can be achieved
in the ns simulator by setting setting extradelay to 0. In
the CBQ implementation a small steady-state burst size is
achieved by setting minburst to 1.

3.2 Setting Maxidle

Maxidle controls the burstiness allowed to a class. As Ap-
pendix ?? shows, to permit a maximum burst of
back-to-back packets, maxidle is set as follows:

for the interpacket time for `average' sized packets sent
back-to-back, the fraction of the link bandwidth allocated
to the class, and weight , for

In addition, the following constraint should be observed:

Appendix ?? shows that the calculation of avgidle in the
code in fact corresponds to the equations in [FJ95]. Ap-
pendix ?? justifies the equations used for setting the variable
undertime in the procedure rmc update class util.

3.3 Setting Offtime

For leaf classes, offtime controls the steady-state burst size
for a regulated class. In cbqd, for a regulated class with a
burst size of 1, offtime in its unscaled value is set as follows:

This is the target waiting time to maintain the allocated band-
width with a steady-state burst size of only one packet.

For a steady-state burst size of packets for
, cbqd further modifies offtime as follows:

4 Description of experimental testbed

In the development and the testing of this CBQ implementa-
tion, one testbed was used to test and refine the CBQ imple-
mentation and collect the results from various experiments.
The testbed as seen in Figure 1.

This testbed employs 6 Sun SPARCstation 20 and Sun
SPARCstation 5 workstations. The router in figure 1 is a Sun

ROUTER

SINK

VIDEO
SOURCESOURCE

10 Mbps

1.5 Mbps

VIDEO
SOURCE SOURCE

DATA DATA

GROUP
 A

GROUP
 B

GROUP
 A

GROUP
 B

Figure 1: Network Setup for Link Sharing Experiments

SPARCstation 20 with two 125 MHz HyperSPARC CPUs
with 256 KBytes of external cache. The router running So-
laris 2.5.1 has been updated with TCP/IP kernel modules
that will accommodate RSVP operation, routing function-
ality, IGMPv2, and DVMRP multicast routing. Within this
testbed, cbqd was employed to configure the link between
the router and the sink to test the CBQ implementation in
various link sharing experiments. Each of the sources in the
testbed where connected to the router via switched ethernet
on individual networks.

For testing RSVP operation with CBQ, the testbed in fig-
ure 1 was upgraded. The link between the router and the sink
was upgraded to 10 MBit/second switched ethernet. All the
links between the router and the sources remained the same.

In performing CBQ and/or RSVP experiments, a number
of parameters were captured and examined to gain insight on
the performance of the CBQ machinery. These parameters
included packet delay, throughput, packet drops, and avgidle
within a class. To capture these parameters, a number of
tools where employed including tcpdump and adb.

References

[BZ97] R. Braden and L. Zhang. Resource reser-
vation protocol version 1 functional specifi-
cation. (Internet draft, work in progress),
June 1997. URL ftp://ds.intenic.net/internet-
drafts/draft-ietf-rsvp-spec-16.txt.

[FJ95] S. Floyd and V. Jacobson. Link-sharing and
resource management models for packet net-
works. IEEE/ACM Transactions on Network-
ing, 3(4), 1995.

Floyd and Speer, Experimental Results for CBQ 4

[Flo97] S. Floyd. Ns simulator tests for class-based
queueing. Unpublished draft, Apr. 1997. URL
ftp://ftp.ee.lbl.gov/papers/cbqsims.ps.Z.

[FS97] S. Floyd and M. Speer. Lbnl' s cbq code
v2.0. Technical report, May 1997. URL
ftp://ftp.ee.lbl.gov/cbq2.0.tar.Z.

[Jac95] V. Jacobson. Lbnl' s cbq code v1.1.
Technical report, August 1995. URL
ftp://ftp.ee.lbl.gov/cbq.tar.Z.

[MF95] S. McCanne and S. Floyd. Ns (network simula-
tor), 1995. URLs http://www-nrg.ee.lbl.gov/ns,
http://www-mash.cs.berkeley.edu/ns/.

[WGC 95] I. Wakeman, A. Ghosh, J. Crowcroft, V. Ja-
cobson, and S. Flo yd. Implementing
real time packet forwarding policies using
streams. Technical report, January 1995. URL
ftp://cs.ucl.ac.uk/darpa/usenix-cbq.ps.Z.

